太阳成8722(中国)有限公司-GREEN NO.1

太阳成8722  >  科学研究  >  科研成果  >  正文
科研成果
博士生李游的论文在REMOTE SENSING 刊出
发布时间:2017-06-26 14:12:06     发布者:yz     浏览次数:

标题:A Density-Based Clustering Method for Urban Scene Mobile Laser Scanning Data Segmentation作者:Li, Y (Li, You); Li, L (Li, Lin); Li, DL (Li, Dalin); Yang, F (Yang, Fan); Liu, Y (Liu, Yu)

来源出版物:REMOTE SENSING卷:9期:4 文献编号:331 DOI:10.3390/rs9040331 出版年:APR 2017

摘要:The segmentation of urban scene mobile laser scanning (MLS) data into meaningful street objects is a great challenge due to the scene complexity of street environments, especially in the vicinity of street objects such as poles and trees. This paper proposes a three-stage method for the segmentation of urban MLS data at the object level. The original unorganized point cloud is first voxelized, and all information needed is stored in the voxels. These voxels are then classified as ground and non-ground voxels. In the second stage, the whole scene is segmented into clusters by applying a density-based clustering method based on two key parameters: local density and minimum distance. In the third stage, a merging step and a re-assignment processing step are applied to address the over-segmentation problem and noise points, respectively. We tested the effectiveness of the proposed methods on two urban MLS datasets. The overall accuracies of the segmentation results for the two test sites are 98.3% and 97%, thereby validating the effectiveness of the proposed method.

入藏号:WOS:000402571700030

文献类型:Article

语种:English

作者关键词: mobile laser scanning; voxel; clustering; segmentation

扩展关键词: LIDAR POINT CLOUDS; POLE-LIKE OBJECTS; AUTOMATIC DETECTION; ROAD MARKINGS; ZEBRA CROSSINGS; EXTRACTION; RECONSTRUCTION; CLASSIFICATION; TREES; RECOGNITION

通讯作者地址:Li, L (reprint author), Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

Li, L (reprint author), Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

Li, L (reprint author), Wuhan Univ, Minist Educ, Key Lab GIS, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

电子邮件地址:boycecug@gmail.com; lilin@whu.edu.cn; lidalin@whu.edu.cn; yhlx125@163.com; liuyu_whu@foxmail.com

地址:

[Li, You; Li, Lin; Li, Dalin; Yang, Fan; Liu, Yu] Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

[Li, You] Beijing Inst Architectural Design Grp Co Ltd, 62 Nanlishi Rd, Beijing 100045, Peoples R China.

[Li, Lin] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

[Li, Lin] Wuhan Univ, Minist Educ, Key Lab GIS, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

研究方向:Remote Sensing

ISSN:2072-4292

影响因子:3.244

信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 太阳成8722
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn

Baidu
sogou