太阳成8722(中国)有限公司-GREEN NO.1

太阳成8722  >  科学研究  >  科研成果  >  正文
科研成果
博士生王俊杰的论文在GEODERMA刊出
发布时间:2014-02-17 09:54:51     发布者:yz     浏览次数:

标题:Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy作者:Wang, Junjie; Cui, Lijuan; Gao, Wenxiu; Shi, Tiezhu; Chen, Yiyun; Gao,Yin

来源出版物:GEODERMA 卷:216 页:1-9 DOI:10.1016/j.geoderma.2013.10.024 出版年:MAR 2014

摘要:In order to monitor the accumulation of heavy metals effectively and avoid the damage to the health of agricultural soils, a promising approach is to predict low concentrations of heavy metals in soils using visible and near-infrared (VNIR) reflectance spectroscopy coupled with calibration techniques. This study aimed to (i) compare the performance of a combination of partial least squares regression with genetic algorithm (GA-PLSR) against a general PLSR for predicting low concentrations of four heavy metals (i.e., As, Pb, Zn and Cu) in agricultural soils; (ii) explore the transferability of GA-PLSR models defined on one subset of land-use types to the other types; and (iii) to investigate the predictive mechanism for the prediction of the metals. One hundred soil samples were collected in the field locating at Yixing in China, and VNIR reflectance (350-2500 nm) spectra were measured in a laboratory. With the entire soil samples, GA-PLSR and PLSR models were calibrated for the four heavy metals using a leave-one-out cross-validation procedure. The GA-PLSR models achieved better cross-validated accuracies than the PLSR models. For the transferability of GA-PLSR models, the soil samples were divided into three pairs of training sets and test sets from different land-use types. Three GA-PLSR models defined on the training sets had good transferability to the test sets, but nine GA-PLSR models were not successful. As for the predictive mechanism, besides the widely-used correlation analysis between OM and the metals, the relationship between the content of OM and the prediction accuracy of the metals was investigated and the similarity of the important wavelengths for OM and the metals was compared. The three methods verified that OM had a significant correlation with the predictions of the spectrally-featureless metals (Pb, Zn and Cu) from VNIR reflectance. We conclude that GA-PLSR modeling has a better capability for the prediction of the low heavy metal concentrations from VNIR reflectance, and it has a potential of transferability between different land-use types, and its accuracy is fundamentally influenced by OM.

入藏号:WOS:000330093700001

文献类型:Article

语种:English

作者关键词:Soil heavy metal, VNIR reflectance spectroscopy, GA-PLSR, Land-use type, Predictive mechanism

扩展关键词:PARTIAL LEAST-SQUARES; RIVER FLOODPLAINS; HYPERSPECTRAL MEASUREMENTS; FIELD SPECTROSCOPY; ORGANIC-MATTER; MINING AREA; CONTAMINATION; COMPONENTS; REGRESSION; INDICATOR

通讯作者地址:Gao, Wenxiu; Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China.

电子邮件地址:wxgao@whu.edu.cn

地址:

[Wang, Junjie; Shi, Tiezhu; Chen, Yiyun; Gao, Yin] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.

[Wang, Junjie; Shi, Tiezhu; Chen, Yiyun; Gao, Yin] Wuhan Univ, Key Lab Geog Informat Syst, Minist Educ, Wuhan 430079, Peoples R China.

[Cui, Lijuan] Chinese Acad Forestry, Inst Wetland Res, Beijing 100091, Peoples R China.

[Gao, Wenxiu] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China.

研究方向:Agriculture

ISSN:0016-7061

信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 太阳成8722
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn

Baidu
sogou