太阳成8722(中国)有限公司-GREEN NO.1

太阳成8722  >  学院新闻  >  正文
学院新闻
硕士何青青的论文在INTERNATIONAL JOURNAL OF REMOTE SENSING刊出
发布时间:2013-11-11 16:04:32     发布者:yz     浏览次数:

标题:An unsupervised classifier for remote-sensing imagery based on improved cellular automata作者:He, Qingqing; Dai, Lan; Zhang, Wenting; Wang, Haijun; Liu, Siyuan; He,Sanwei

来源出版物:INTERNATIONAL JOURNAL OF REMOTE SENSING 卷:34 期:21 页:7821-7837 DOI:10.1080/01431161.2013.822596 出版年:NOV 10 2013

摘要:Traditional unsupervised classification algorithms for remote-sensing images, such as k-means (KM), have been widely used for massive data sets due to their simplicity and high efficiency. However, they do not usually take the interaction between neighbouring pixels into account, but only take individual pixels as the elements for clustering and classification. According to Tobler's first law of geography, everything is related to everything else, but near things are more related than distant things. To make use of the spatial interaction between pixels, the cellular automata method can be employed to improve the accuracy of image classification. In cellular automata theory, the state of a cell at the next moment is determined by its current state and that of its neighbours. In traditional cellular automata methods, which are based on a standard neighbour configuration, even if the influence of neighbouring cells on the central cell is measured, the weights of these influences are the same. Hence, this article proposes an improved cellular automata method for image classification by allowing the cellular automata to diffuse in a geometrical circle, and by measuring the influence of the neighbouring cells using a fuzzy membership function. The proposed classifier was tested with typical Landsat Enhanced Thematic Mapper Plus (ETM+) and high-resolution images. The experiments reveal that the new classifier can achieve better results, in terms of overall accuracy and kappa coefficient, than cellular automata classifier based on Moore type (CAS), KM, and fuzzy c-means.

入藏号:WOS:000324459800023

文献类型:Article

语种:English

扩展关键词:URBAN-GROWTH; SEGMENTATION; GIS; INFORMATION; GEOBIA; SCALE; SETS

通讯作者地址:Wang, Haijun ;Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

电子邮件地址:landgiswhj@163.com

地址:

[He, Qingqing; Dai, Lan; Wang, Haijun] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

[He, Qingqing] NASG, Chongqing Inst Surveying & Mapping, Chongqing, Peoples R China.

[Zhang, Wenting; He, Sanwei] Chinese Univ Hong Kong, Dept Geog & Resource Management, Hong Kong, Hong Kong, Peoples R China.

[Liu, Siyuan] Zte Corp, Network Management Dept, Chengdu R&D Ctr, Chengdu, Peoples R China.

研究方向:Remote Sensing; Imaging Science & Photographic Technology

ISSN:0143-1161

信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 太阳成8722
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn

Baidu
sogou