标题:Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems作者: Zou, L (Zou, Ling); Wang, LC (Wang, Lunche); Xia, L (Xia, Li); Lin, AW (Lin, Aiwen); Hu, B (Hu, Bo); Zhu, HJ (Zhu, Hongji)
来源出版物:RENEWABLE ENERGY卷:106 页码:343-353 DOI:10.1016/j.renene.2017.01.042 出版年: JUN 2017
摘要:Solar radiation plays an important role in climate change, energy balance and energy applications. In this work, an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is proposed and compared with Expanded-Improved Bristow-Campbell Model (E-IBCM) and Improved Yang Hybrid Model (IYHM) to predict daily global solar irradiance (H-g) in China. The BCM is expanded by adding meteorological parameters and coefficients calibrated at each station, the YHM is improved by correcting cloud transmittance co-efficients at three stations in Hunan province, China. Daily sunshine duration (S), relative humidity (RH), precipitation (P-re); air pressure (AP), daily mean/maximum/minimum temperature (Delta T/T-max/T-min) are used as inputs for model development and application, while daily H-g is the only output. Performances of different models are evaluated by Root Mean Square Errors (RMSE), Mean Absolute Errors (MAE) and Coefficient of Determination (R-2). The results indicate that the improved empirical models (E-IBCM and IYHM) provides better accuracy than the original models and the ANFIS model is proved to be superior to the E-IBCM and IYHM model in predicting H-g. The statistical results of ANFIS model range 0.59 -1.60 MJ m(-2) day(-1) and 0.42-1.21 MJ m(-2) day(-1) for RMSE and MAE, respectively. The nonlinear modeling process of ANFIS may contribute to its excellent modeling performance.
入藏号:WOS:000395212500034
文献类型:Article
语种:English
作者关键词:Global solar irradiance prediction; Adaptive Neuro-Fuzzy Inference Systems; Bristow-Campbell Model; Yang Hybrid Model; China
扩展关键词:TURBIDITY COEFFICIENT BETA; GLOBAL RADIATION; HYBRID MODEL; MEDITERRANEAN REGION; CHINA; TEMPERATURE; PERFORMANCE; NETWORKS; SURFACES; MACHINE
通讯作者地址: Zou, L; Lin, AW (reprint author), Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei Province, Peoples R China.
Wang, LC (reprint author), China Univ Geosci, Sch Earth Sci, Lab Crit Zone Evolut, Wuhan 430074, Peoples R China.
电子邮件地址:cheryl_zou@whu.edu.cn; wang@cug.edu.cn; aiwen_lin@l63.com
地址:
[Zou, Ling; Xia, Li; Lin, Aiwen; Zhu, Hongji] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei Province, Peoples R China.
[Wang, Lunche] China Univ Geosci, Sch Earth Sci, Lab Crit Zone Evolut, Wuhan 430074, Peoples R China.
[Wang, Lunche; Hu, Bo] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Phys & Atmospher, Beijing 100029, Peoples R China.
研究方向: Science & Technology - Other Topics; Energy & Fuels
ISSN:0960-1481
影响因子:3.404
版权所有 © 太阳成8722
地址:湖北省武汉市珞喻路129号 邮编:430079
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:sres@whu.edu.cn